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  Abstract 
 Autonomy and connectivity are considered among the most promising technologies to improve 
safety and mobility and reduce fuel consumption and travel delay in transportation systems. In this 
paper, we devise an optimal control-based trajectory planning model that can provide safe and 
e�  cient trajectories for the subject vehicle while incorporating platoon formation and lane-changing 
decisions. We embed this trajectory planning model in a simulation framework to quantify its fuel 
e�  ciency and travel time reduction benefi ts for the subject vehicle in a dynamic tra�  c environment. 
Specifi cally, we compare and analyze the statistical performance of di� erent controller designs in 
which lane changing or platooning may be enabled, under di� erent values of time (VoTs) for trav-
elers. Results from extensive numerical experiments indicate that our design can not only provide 
fi rst-hand cost savings for the subject vehicle but also second-hand savings for vehicles upstream 
of the subject vehicle. Experiments also highlight that lane changing and platooning can both o� er 
benefi ts, depending on the relative values of fuel cost and the traveler’s VoT: with a small VoT, the 
fuel e�  ciency benefi ts of platooning outweigh time savings o� ered by lane changing. However, a 
vehicle with a high VoT may fi nd it more benefi cial to travel outside of a platoon and complete its 
trip faster by leveraging lane changes.      
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     Introduction 

 It is envisioned that, in the near future, transportation 
systems would be composed of vehicles with varying levels 
of connectivity and autonomy. Connected vehicle (CV) 

technology facilitates communication among vehicles, the 
infrastructure, and other road users [ 1 ], allowing vehicles to 
see  beyond the driver’s line of sight and the transportation 
infrastructure to be proactive in responding to stochastic 
changes in road conditions and travel demand [ 2 ]. 

 Automated vehicle technology enables automation of 
vehicles at di� erent levels, where Level 0 automation indicates 
no automation; Automation levels 1 and 2 refer to a single and 
multiple driving-assistance systems being present in the 
vehicle, respectively. Level 3 automation allows the transfer 
of control authority between the human driver and the auton-
omous entity when the automation fails. Level 4 autonomy 
allows for the vehicle to control all functionalities within 
speci� ed regions. Finally, in level 5 autonomy vehicles can 
travel anywhere without any intervention from human 
drivers [ 3 ]. 

 Although the connected and automated vehicle (CAV) 
technologies can each be deployed independently in a vehicle, 
when combined they can provide a synergistic e� ect that goes 
beyond the sum of their individual bene� ts. It is expected that 
upon deployment, the CAV technology could signi� cantly 
improve mobility, enhance safety and tra�  c � ow stability, 
reduce congestion, and improve fuel economy, among other 
bene� ts [ 4 ,  5 ,  6 ,  7 ,  8 ]. � e degree to which such bene� ts can 
be realized in real-world conditions depends on a wide array 
of factors, among which trajectory planning of CAVs plays a 
major role [ 9 ]. � e main purpose of trajectory planning is to 
provide a vehicle with a collision-free path, considering the 
vehicle dynamics, the surrounding tra�  c environment, and 
tra�  c rules [ 10 ]. More comprehensive works could incorpo-
rate secondary objectives such as achieving fuel economy [ 11 , 
 12 ,  13 ,  14 ,  15 ] and time e�  ciency [ 16 ,  17 ]. 

 Platooning is one of the applications of the CAV technology, 
which allows for vehicles to travel with small gaps between them, 
thereby reducing the aerodynamic drag on platoon members 
and increasing fuel e�  ciency [ 18 ]. To enjoy the bene� ts of 
platooning, the trajectory planning methods should be enhanced 
to include platooning decisions, including (1) whether a vehicle 
should merge into a platoon, and (2) among the existing 
platoons, which platoon should a vehicle join, among others. 
Additionally, in the existence of platoons, lane changing 
becomes a more complex task: for a platoon member to join 
lanes, they should dissolve from the platoon and incur the 
energy cost of such a decision. Furthermore, a decision on the 
part of a vehicle to dissolve from a platoon will impact the energy 
e�  ciency of other platoon members. Similarly, merging into a 
platoon may require changing lanes, which could o� set some 
of the fuel e�  ciency bene� ts of platooning. � erefore, accounting 
for platoon-merging and lane-changing decisions is a critical 
part of trajectory planning in the era of CAV technology. 

 � ere are a number of classical methods on trajectory 
planning, such as sampling based [ 19 ,  20 ], optimization based 

[ 21 ,  22 ], and graph search based [ 23 ]. � ese studies and their 
potential for use in CAV systems will be discussed in detail 
in the Related Works section. Despite the high performance 
of these methods on trajectory planning, the transportation 
systems of the future are expected to have high levels of 
autonomy and connectivity, thereby requiring the existing 
methods to be  reviewed and reevaluated within this new 
context. More precisely, although current methods can plan 
vehicles’ lateral and longitudinal positions, they need to 
be enhanced to explicitly make discrete decisions on platoon 
merging and lane changing jointly with continuous decisions 
on trajectory planning. � e contributions of this paper are 
as follows:

•    We put forward a joint cruising, lane changing, and 
platoon-merging planner for a CAV, in a dynamic 
environment with a mixed tra�  c consisting of 
connected and legacy vehicles. � e planner is capable of 
planning the future geo-coordinates of the vehicle jointly 
with lane-changing and platoon-merging decisions.  

•   We develop a simulation environment for tra�  c 
dynamics, in which vehicles may enter or exit the tra�  c 
stream, merge into or split from a platoon, change lanes, 
and adjust their velocities.  

•   We demonstrate that the subject vehicle (which is 
assumed to be connected and automated) can obtain 
statistically signi� cant fuel and time savings through 
extensive simulations in various tra�  c states (i.e., free-
� ow, onset-of-congestion, and congested).  

•   We demonstrate that legacy vehicles traveling upstream 
the subject vehicle can obtain statistically signi� cant fuel 
e�  ciency bene� ts.  

•   We evaluate the performance of our design under 
di� erent minimum platoon-keeping distance 
requirements and values of time (VoTs) for travelers.    

 The rest of the article is organized as follows: First, 
we  review the literature on trajectory planning. Then, 
we  formulate an optimal control model for planning the 
trajectory of a CAV. Next, we present a general framework for 
the study and our assumptions, as well as a simulation envi-
ronment that consists of a two-lane highway with multiple 
on- and o� -ramps and a dynamic tra�  c stream. In particular, 
we describe how vehicles with various levels of autonomy and 
connectivity interact with each other in the simulation envi-
ronment. Finally, we conduct a series of analyses under various 
tra�  c conditions to quantify the fuel-e�  ciency bene� ts of 
our approach for the subject vehicle, as well as those of its 
surrounding vehicles within platoons and as free agents. 
We end the paper by summarizing the takeaways.  

  Related Works 
 Traditionally, trajectory planning has been mainly based on 
vehicle dynamics constraints, such as acceleration range and 
steering performance. More advanced driving assistance 
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systems, e.g., adaptive cruise control (ACC), enhance trajec-
tory planning through utilizing data collected by the vehicle’s 
onboard sensors. CV technology provides an opportunity to 
incorporate more diverse types of data (e.g., weather condi-
tions) from a wider spatial range (e.g., from objects beyond 
the line of sight of the vehicle). However, there is a need to 
develop algorithmic tools that can incorporate this informa-
tion into trajectory planning. Several attempts, such as 
Connected Cruise Control [ 32 ,  33 ] and Cooperative Adaptive 
Cruise Control (CACC) [ 34 ,  35 ,  36 ,  37 ] have been made to 
incorporate vehicle-to-vehicle (V2V) communications into 
trajectory planning. CACC is one of the most promising tech-
nologies that allows CVs to autonomously, and without the 
need for a central management system, plan their trajectories 
using V2V communications [ 38 ]. The information f low 
topology in a CACC system typically includes predecessor 
following, predecessor-leader following, bidirectional 

topology, etc. [ 39 ]. Advanced communication protocols, such 
as Dedicated Short-Range Communications (DSRC), LTE, 
and 5G are proposed and developed to improve the commu-
nication bandwidth of V2V communications [ 40 ,  41 ,  42 ]. 

  Table 2  summarizes recent studies in the literature that 
have focused on trajectory planning of CAVs, with di� erent 
levels of automation. � is table points out multiple attributes 
of these studies, including whether obstacles are dynamic or 
not, the environment geometry, whether the ego vehicle is 
capable of platoon formation, whether lateral motion is 
considered or not, the penetration rate of CVs, and their cost 
functions. � e rest of this section elaborates on the speci� cs 
of these attributes. 

 � e ultimate goal of trajectory planning is to enable 
vehicles to travel safely and e�  ciently in real tra�  c conditions. 
� erefore, di� erent trajectory planning algorithms are devel-
oped for implementation in di� erent contexts to capture 

  TABLE 1      Summary of parameters.   

Parameter Value Defi nition
t upd 0.4 s Updating period of the trajectory of the subject vehicle

p on 0.6 The possibility that a vehicle is interested in joining the freeway from an on-ramp

p o� 0.6 The possibility that a vehicle is interested in taking an o� -ramp

p npe 0.5 The possibility that the vehicle is a non-platoon-enabled vehicle

p merge 0.6 The possibility that a vehicle intends to merge

p change 0.1 The probability that the vehicle intends to change lane

t p 3.5 s Time gap between two successive vehicles that are not in a platoon

t g 0.55 s Time gap between two successive vehicles in a platoon

t lcp 3.6 s Surrounding vehicles fi nish lane changing within this time

t lc 5 s The minimum time interval between two successive lane changes by successive vehicles

τs 0.4 s Updating period of the trajectory of surrounding vehicles

τcf 1.0 s Reaction time delay in the car-following model

tNact
10 s Prediction horizon in the optimal control model

le
mv 20 m/s The velocity in left the lane when it reaches the maximum fl ow

ri
mv 14 m/s The velocity in the right lane when it reaches the maximum fl ow

le
maxv 30 m/s The maximum velocity in the left lane

ri
maxv 20 m/s The maximum velocity in the right lane

amax 2 m / s 2 The maximum acceleration for the subject vehicle

jmax 3.5 m / s 3 The maximum jerk for the subject vehicle

d cg 50 m The critical gap decides whether it is feasible to change lane

l car 5 m Length of a vehicle

h st 5 m The vehicle would stop at headway of this value

a 2 m / s 2 The maximum desired acceleration

b 3 m / s 2 The comfortable deceleration

γAR 0.3987 Coe�  cient for air resistance force

γRR 281.547 Coe�  cient for rolling resistance force

γGR 0 Coe�  cient for grade resistance force

γIR 1750 Coe�  cient for inertia resistance force

ηf 5.98 × 10 −8  dollars/J Fuel cost for a unit energy consumed by the vehicle

P sch {2,10,50} The scheduled splitting position can be 2, 10, or 50 road pieces later

( )sch sch, µ σ       (2, 5), left, 
      (−1, 5), right

The norm distribution of the scheduled splitting position in two lanes, respectively
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di� erent abstractions of real-world conditions, e.g., obstacles, 
curved roads, signal lights, and mixed tra�  c components [ 43 ]. 
In [ 24 ], Gu et al. focus on the subject vehicle’s movement 
around a single static obstacle, and its distance-keeping and 
overtaking of a single leading vehicle. [ 11 ] proposes a dynamic 
programming algorithm for speed planning in a transporta-
tion network with stop signs and tra�  c lights. [ 27 ] presents a 
method that exploits the complete permissible road width in 
curvy road segments to increase driving comfort and safety 
through minimized steering actuation. [ 26 ,  28 ] consider the 
impact of surrounding vehicles with � xed velocity on the 
trajectory planning of the subject vehicle. In general, the 
degree to which di� erent models are set to imitate real tra�  c 
conditions depends on research priorities. � e closer the envi-
ronment can resemble real-world conditions the higher the 
accuracy and reliability of trajectory planning, but the higher 
the computational complexity and the worse the real-time 
performance. [ 44 ] reviews planning and control algorithms 
for self-driving vehicles in urban environment and highway 
scenarios. A review of the existing studies reveals that, in 
general, the literature is very limited in capturing the dynamics 
of the driving environment. In our work, we develop a trajec-
tory planning method for a general highway system based on 
the work by [ 22 ]. However, we add several components, such 
as on-ramps and o� -ramps, lane-changing capability, speed 
adjusting, and penetration of platoons, to more accurately 
simulate the surrounding tra�  c environment. 

 Lane changing is another important component of trajec-
tory planning. Lane changing is one of the most challenging 
driving maneuvers for researchers to understand and predict, 
and one of the main causes of congestion and collisions in 
the transportation system [ 45 ]. � e real-time information 
received from the driving environment and other road users 

can be  used to facilitate lane-changing maneuvers that 
enhance safety, comfort, and traffic efficiency [ 22 ]. [ 46 ] 
propose a distributed algorithm to make lane-changing deci-
sions. � e authors claim that this mechanism can maximize 
the number of safe lane changes within the entire system. 
However, they did not demonstrate the level of improvement 
in system-level performance. � e developments in lane-
changing models before 2014 are comprehensively reviewed 
in [ 47 ,  48 ]. Zheng et al. [ 48 ] claim that in real lane-changing 
situations, drivers can simultaneously monitor and evaluate 
multiple spacings in the target lane and make a decision on 
where and how to execute the lane change. In [ 45 ], two types 
of games are proposed for modeling the lane-changing 
behavior: under complete information in the presence of CV 
technology and under incomplete information in its absence. 
Simulation results indicate that the game theoretic-based 
lane-changing models are more realistic than the basic gap-
acceptance model and the MOBIL model. Wang et al. [ 49 ] 
proposed a predictive model for lane-changing control that 
considers both discrete lane-changing decisions and contin-
uous acceleration values. � e lane-changing method proposed 
by Luo et al. in 2016 [ 22 ] executes lane-changing maneuvers; 
however, their model is not capable of making lane-changing 
decisions. A review of the existing work on lane changing 
demonstrates that most research in this area focuses either 
on when or where to change lanes or on the execution of lane 
changing a� er the decision to change lanes has been made. 
Nilsson et al. [ 50 ] propose a lane-changing method composed 
of three steps, that is, deciding whether to change lanes, 
selecting the target position and the time instance to initiate 
the lane changing process, and planning the trajectory. 
However, these three steps are followed sequentially. In 
contrast, in our work, we  make all three decisions 

  TABLE 2      Overview of the trajectory planning literature.   

Cost
Study Obstacle Environment Platoon Lateral motion Connectivity Tracking Fuel Time Comfort/ safety
[ 24 ] Dynamic Curvy lanes No Yes No Yes No No Yes

[ 11 ] Static Routes No No No No Yes No No

[ 25 ] Dynamic Curvy lanes No Yes No No No No Yes

[ 26 ] Dynamic Lanes Yes Yes Partial Yes No No No

[ 27 ] Dynamic Curvy lanes No No No No No No Yes

[ 28 ] Dynamic Lanes Yes Yes Full No Yes Yes Yes

[ 29 ] Static Curvy lanes No No No Yes No No No

[ 23 ] Dynamic Curvy lanes No Yes No Yes No No Yes

[ 19 ] Dynamic Curvy lanes No Yes No No No Yes Yes

[ 20 ] Static Free space No Yes No No No No Yes

[ 30 ] Dynamic Curvy lanes No Yes No No No No Yes

[ 31 ] Static Curvy lanes No Yes No No No Yes Yes

This 
article

Dynamic Lanes Yes Yes Partial No Yes Yes Yes
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concurrently in an integrated framework to minimize fuel 
and time costs. We move the state of the art one step forward 
by evaluating multiple spacings in the target lane from the 
viewpoint of the feasibility of maneuvering, safety, and e�  -
ciency. Furthermore, we evaluate the e� ects of lane changing 
in long-distance travels in a dynamic system. 

 Platooning makes one of the most interesting and 
important components of trajectory planning in the next 
generation of transportation systems. The capability to 
incorporate platooning is another factor that di� erentiates 
existing trajectory planning methods. Platooning is a speci� c 
application of the CV technology that can introduce a wide 
range of vehicle- and system-level bene� ts. A platoon is a 
single-� le line (i.e., a virtual train) of vehicles that, owing to 
constant communication, are able to travel with small gaps 
between them. Platoon formation can introduce many 
bene� ts including (i) Energy e�  ciency through reducing the 
aerodynamic drag force on platoon members [ 51 ,  52 ]; (ii) 
Reducing emissions [ 53 ]; (iii) Increasing road capacity 
through reducing the headways between vehicles; (iv) 
Reducing stochasticity in the tra�  c stream by having platoon 
members follow the platoon leader, thereby reducing the 
likelihood of highway tra�  c breakdown, improving travel 
times, and increasing travel time reliability [ 54 ,  55 ]; (v) 
Facilitating real-time management of tra�  c and improving 
mobility by aggregating the unit of tra�  c from an individual 
vehicle to a cluster of vehicles.  Table 2  lists studies in the 
literature that incorporate platooning. Note that “yes” for 
the � eld “platoon” in this table indicates the capability of 
platoon formation, rather than platoon control strategies 
[ 56 ,  57 ] or intra-platoon communication [ 58 ,  59 ]. In our 
work, we model possible platoon formations between the 
subject vehicle and its surrounding vehicles. Furthermore, 
our method will make merging/splitting decisions along 
with trajectory planning. 

 � e ability to capture the heterogeneity in the level of 
connectivity and autonomy of vehicles is another factor that 
differentiates existing trajectory planning methods, as 
described in  Table 2 . Finally, trajectory planning methods are 
di� erent in terms of their objective function. In general, the 
goal is to � nd the least-cost trajectory, where the cost function 
could include any combination of the following components: 
time cost of the trip (i.e., trip length), fuel consumption, 
comfort and safety of onboard passengers, and precision in 
tracking (i.e., the degree to which the vehicle deviates from a 
prespeci� ed ideal trajectory). 

 � ere are a number of comprehensive reviews on path 
planning, maneuver choice, and trajectory planning [ 60 ,  61 ]. 
A more recent work utilizes optimal control to plan trajecto-
ries for automated vehicles, where they leverage dynamic 
programming to provide an initial trajectory based on a 
simpli� ed optimal control problem [ 62 ]. However, they do not 
consider platooning, which is envisioned to be an important 
component of future tra�  c streams, nor do they consider the 
bene� ts of utilizing optimal trajectories, neither through 
simulations nor through real-world experiments.  

  Methods 
 The goal of this study is to design an optimal control-based 
trajectory planning model that can be utilized by an auto-
mated (level 2 or higher autonomy) vehicle, hereafter 
referred to as the  subject vehicle.  The optimal control model 
will be designed to incorporate microscopic traffic infor-
mation from the traffic stream in the local neighborhood 
of the subject vehicle, with the goal of devising fuel- and 
time-efficient trajectories that may include merging into a 
platoon and changing lanes. We  start this section by 
describing the optimal control model. We then describe 
the general framework and our assumptions, as well as a 
simulation environment that we will use to quantify the 
overall cost savings for the subject vehicle and its 
surrounding traffic. 

  Optimal Control Model 
 In this section, we devise an optimal control model to deter-
mine the trajectory of the subject vehicle in real time. It is 
noted that this work focuses more on decision-making and 
trajectory planning, rather than trajectory tracking, so 
we simplify the vehicle dynamics model as a mass point and 
assume we can directly control its longitudinal and lateral 
acceleration, and thereby its trajectory. � e proposed optimal 
control model is probably safe and is designed to account for 
fuel and time eff iciency, as well as comfort of 
onboard passengers. 

 � e optimal control model is a nonlinear optimization 
model. � e state variables of this model include longitudinal 
and lateral positions, platoon membership status (whether 
or not in a platoon, and the scheduled splitting time if a 
platoon member), and the control variables are longitudinal 
and lateral accelerations, the binary decision to join a 
platoon and the binary decision to change lanes. While 
adjusting acceleration can be considered as a single action 
that can be almost instantaneously carried out, a change in 
lane position and platoon membership is a lengthier process 
and may require multiple sub-actions, as described in  Table 
3 . As demonstrated in this table, at each time step the subject 
vehicle can be in one of the following six states: ( i ) “le�  lane; 
free agent,” indicating that the vehicle is in the le�  lane and 
is not part of any platoon; ( ii ) “right lane; free agent,” indi-
cating that the vehicle is in the right lane and is not part of 
any platoon; ( iii ) “le�  lane; in platoon (active),” indicating 
that the subject vehicle is in the le�  lane and is the platoon 
leader, and the scheduled platoon splitting position has not 
yet reached; ( iv ) “right lane; in platoon (active),” indicating 
that the subject vehicle is in the right lane and is the platoon 
leader, and the scheduled platoon splitting position has not 
yet reached; ( v ) “le�  lane; in platoon (passive),” indicating 
that the subject vehicle is in the le�  lane, the platoon split-
ting position has reached, and the platoon the subject vehicle 
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was formerly leading is in the process of dissolving; ( vi ) 
“right lane; in platoon (passive),” indicating that the subject 
vehicle is in the right lane, the platoon splitting position has 
reached, and the platoon the subject vehicle was formerly 
leading is in the process of dissolving. 

  Table 3  shows that at each time step, the subject vehicle 
switches from its current state to a target state. Depending on 
its initial and target states, the subject vehicle may need to 
complete a sequence of sub-actions, including “wait,” “merge,” 
“split,” and “lane change.” � e “wait” sub-action indicates that 
the vehicle needs to maintain its state a� er completing its 
previous sub-action. � e sub-actions “merge” and “split” 
indicate merging into a platoon and splitting from a platoon, 
respectively. Finally, the “lane change” sub-action indicates 
changing lanes. For example, if the target state “right lane; in 
platoon” is the selected action under the current state “le�  
lane; in platoon (active),” then the subject vehicle needs to 
complete the sequence of sub-actions “split→wait→lane 
change→merge→wait.” 

  The Trajectory Function     Following [ 22 ], we  use a 
quintic function, based on time, as our trajectory function for 
each sub-action. � e quintic function is selected because it 

guarantees a smooth overall trajectory, even with multiple 
di� erent sub-actions.  Equation 1  shows the trajectory function,
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where  x ( t ) and  y ( t ) indicate the longitudinal and lateral posi-
tions of the vehicle at time  t , respectively, and  Nact  denotes the 
number of sub-actions the subject vehicle needs to complete. 
Coe�  cients    ai

0     through    ai
5     and    bi

0     through    ai
5     are decision vari-

ables that determine the optimal solution. Function  f i ( t ) may 
be formulated as

f t
t t t

i
i i� � �
� ��

�
�

�1

0
1

otherwise
     Eq. (2)  

where [ ti −1 ,  t i ] is the time window for completing the  i th sub-
action , and  tNact  is the prediction horizon.  

  TABLE 3      Sub-action sequences for each state-action tuple.   

Initial state Target state Sub-action sequence
Left lane; free agent Left lane; free agent   

 Left lane; in platoon   

 Right lane; free agent   

 Right lane; in platoon

Wait   

 Merge→wait   

 Wait→lane change→wait   

 Wait→lane change→merge→wait

Right lane; free agent Left lane; free agent   

 Left lane; in platoon   

 Right lane; free agent   

 Right lane; in platoon

Wait→lane change→wait   

 Wait→lane change→merge→wait   

 Wait   

 Merge→wait

Left lane; in platoon (active) Left lane; free agent   

 Left lane; in platoon   

 Right lane; free agent   

 Right lane; in platoon

Split→wait

 Wait   

 Split→wait→lane change→wait   

 Split→wait→lane change→merge→wait

Right lane; in platoon (active) Left lane; free agent   

 Left lane; in platoon   

 Right lane; free agent   

 Right lane; in platoon

Split→wait→lane change→wait   

 Split→wait→lane change→merge→wait   

 Split→wait   

 Wait

Left lane; in platoon (passive) Left lane; free agent   

 Left lane; in platoon   

 Right lane; free agent   

 Right lane; in platoon

Split→wait   

 Split→wait→merge→wait   

 Split→wait→lane change→wait   

 Split→wait→lane change→merge→wait

Right lane; in platoon (passive) Left lane; free agent   

 Left lane; in platoon   

 Right lane; free agent   

 Right lane; in platoon`

Split→wait→lane change→wait   

 Split→wait→lane change→merge→wait   

 Split→wait   

 Split→wait→merge→wait ©
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  Boundary Conditions     For every sub-action, the 
following boundary conditions must be satis� ed,

x t x x t v x t a

y t y
i t i x t i x t

i

i i i� � �
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     Eq. (4)  

where  ti −1  and  t i  are the starting and ending time for the  i th 
sub-action, respectively, and  xti −1 ,  vx ,  ti −1 ,  ax ,  ti −1 ,  yti −1 ,  vy ,  ti −1 , and 
ay ,  ti −1  are the longitudinal and lateral geo-coordinates, velocity, 
and acceleration for the starting point of the sub-action, 
respectively. � ese values are accordant with the ending point 
for the last sub-action. For each sub-action, the longitudinal 
coordinate, velocity, and acceleration at the end of the sub-
action, as well as the duration of the sub-action are all free 
variables that are optimized.  

  Constraint Sets     � ere are a number of constraints on the 
position, speed, acceleration, and jerk of the subject vehicle 
elaborated in the following.

    1  .    Speed limitation:  � e longitudinal speed of the subject 
vehicle should be no more than the maximum speed 
in its lane, and should always be non-negative, as 
presented in  Equation 5 :

0 � � � � � � �v t x t vx x
l� ,max ,     Eq. (5)   

 where  v x ( t ) denotes the longitudinal speed of the subject 
vehicle,  l  indicates the lane in which the vehicle is trav-
eling, and    vx

l
,max     denotes the maximum vehicle speed in 

lane  l .  
   2  .   Collision avoidance :  � e subject vehicle should 

maintain a minimum time gap (denoted by  tsafe ) from 
its immediate downstream vehicle during all sub-
actions in all  t , as indicated in  Equation 6 ,

x t x t t v t l t t tL N� � � � � � � � � � ��� ��sub safe sub car ,
act

, ,0      Eq. (6)   

 where  x L ( t ) is the position of the immediate downstream 
vehicle (i.e., the leader);  xsub ( t ) and  vsub ( t ) are the position 
and velocity of the subject vehicle, respectively; and  lcar
is the vehicle length.  

   3  .   Acceleration bound :  During all sub-actions, the 
longitudinal or lateral acceleration of the subject 
vehicle cannot exceed a maximum value due to 
mechanical performance limitations and safety 
considerations. � is constraint is enforced in 
 Equation 7 ,

a v ax y x y, , max ,� ��      Eq. (7)   

 where  v x,y  is the velocity vector and  amax  is the 
maximum acceleration.  

   4  .   Jerk bound :  Since the subject vehicle’s jerk directly 
in� uences the comfort level and safety of its onboard 
passengers, we bound the jerk by a maximum value as 
stated in  Equation 8 ,

j v jx y x y, , max ,� ���      Eq. (8)   

 where  jmax  is the maximum jerk.     

  Objective Function     We de� ne the objective function as 
a linear combination of fuel and time costs, as stated in 
 Equation 9 ,
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     Eq. (9)   

 � e four terms γARv2 ( t ), γRR , γGR , and γIR ( a ( t )) +  are the 
aerodynamic resistance force, rolling resistance force, grade 
resistance force, and inertia resistance force, respectively. For 
detailed expressions of these forces, we refer the reader to [ 63 ]. 
� e parameter  ηf  is the fuel cost for a unit energy consumed 
by the vehicle and is measured in dollars. � e parameter  ηt  is 
the unit cost of time, also known as value of time, VoT), and 
is measured in dollars per unit of time, e.g., a second. � e 
parameter  β ( i ) indicates the fuel-saving coe�  cient for sub-
action  i . As reported in [ 51 ], fuel-saving percentage varies 
from 3% to 30% at di� erent spacings with a di� erent number 
of vehicles in a platoon in highway scenarios. Additionally, 
vehicles in the middle of a platoon (i.e., not at the head or tail 
of a platoon) experience the most fuel savings. � e platoon 
tail is the second-best position in terms of fuel saving, and the 
platoon leader has the least fuel saving. Here, for simplicity, 
we assume a 10% fuel saving for all vehicles in a platoon, and 
a 5% fuel saving when a vehicle engages in merging or splitting 
processes. � us, we set  β ( i )  =  1 for a free agent, and  β ( i ) = 0.9 
for a platoon member. Furthermore, we set  β ( i )  =  0.95 for split 
and merge sub-actions because, in the transition state to and 
from a platoon, vehicles still experience fuel savings, but not 
to the same extent as a platoon member. Note that despite the 
platoon-related fuel e�  ciency bene� ts of the merge and split 
processes, the change in velocity during the merge and split 
processes may lead to higher fuel consumption levels. 
However, the optimization problem would naturally account 
for such trade-o� s.   

  General Framework and 
Assumptions 
 In this study, we consider a mixed tra�  c stream with various 
levels of autonomy. Speci� cally, we model both vehicles that 
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are human-driven and not platoon-enabled, and platoon-
enabled vehicles. A platoon-enabled vehicle is a vehicle that 
has level 2 or higher autonomy (and is equipped with distance 
sensing and keeping technology such as ACC) according to 
the Society of Automotive Engineer’s (SAE’s) classi� cation. 
Furthermore, in this study we assume that all vehicles are 
connected, that is, all vehicles can communicate with each 
other and with roadside units (RSUs) using DSRC devices, 
with a reliable communication range of 300  m.  Figure 1  
demonstrates the communication and control framework of 
our work. 

  To develop a simulation environment for the system, 
we divide the transportation network into a number of  road 
pieces.  We de� ne a road piece as a section of a road that satis-
� es the following two conditions: ( i ) � e macroscopic tra�  c 
conditions, to which we refer as “tra�  c states,” are likely to 
be  homogeneous within a road piece. For example, on a 
highway segment the tra�  c conditions around on-ramps and 
o� -ramps are typically di� erent from their upstream and 
downstream segments, indicating that on-ramps and o� -
ramps require dedicated road pieces; ( ii ) Vehicles within a 
road piece are able to communicate with each other, either 
directly or through RSUs. � is requirement implies that, in 
the case of DSRC-enabled communication, the length of a 
road piece cannot exceed 600 m so as to enable all vehicles to 
stay connected using a single RSU located in the middle of 
the road piece. Limiting the length of a road piece ensures 
that, with strategic positioning of RSUs, all CVs can receive 
microscopic tra�  c information of their neighbors (i.e., geo-
coordinates, velocity, acceleration, braking, steering angle, 
etc.) and use this information to plan more informed and 
e�  cient trajectories. 

 In our modeling of a tra�  c stream characterized with 
full connectivity and a heterogeneous level of autonomy, 
we account for the delay between the occurrence of a stimulus 
and the execution of an action in response to it. In the case of 
a human driver, this delay is referred to as the perception-
reaction time [ 64 ] and accounts for the perception delay 
(either by the driver or from the part of the vehicle sensors), 
the decision-making delay, and the execution delay. In the 
case of the autonomous entity being in charge, this delay can 
be attributed to sensory delay, delay in the communication 
network, computational time, and actuation delay. 

  Surrounding Vehicles     Surrounding vehicles’ trajectories 
will be simulated based on a microscopic car-following model 
so as to re� ect a realistic and dynamic tra�  c environment. 
� e surrounding tra�  c information will get updated every 
τs  =  0.4 s. Note that the value of  τ  is selected based on the 
human perception-reaction time, which is within the range 
of 0.3-1.5 s [ 65 ]. However, this is a parameter that can be easily 
adjusted in the model. At each updating step, four functions 
will be executed by the surrounding vehicles in the following 
sequence: join/exit from the highway, merge into/split from a 
platoon, change lanes, and adjust velocity based on a car-
following model. These functions are elaborated in 
the following.

    1  .    Join/exit from the highway:  We assume that the 
probability that a vehicle enters the highway from an 
on-ramp at each updating step is  pon . � e vehicle is 
assumed to be able to join the highway if it can 
maintain a minimum time gap of length  t p  from the 
vehicles both upstream and downstream of the ramp 
entry point in the right lane of the highway. We set 
the speed of this entering vehicle similar to the speed 
of its downstream vehicle. Moreover, we set the 
probability of the vehicle not being a platoon-enabled 
vehicle as  pnpe . 

 At each update step, a vehicle can leave the highway 
if the following three conditions are satis� ed: (1) it is 
traveling on the right lane of the highway, (2) it is located 
at the upstream of an o� -ramp point, and (3) the time 
gap between the vehicle and the off-ramp point is 
smaller than the update step  τs . Among all vehicles that 
satisfy these conditions, we assume the probability that 
one vehicle intends to leave the highway is  po�  . � is 
exiting vehicle and its pro� le is directly taken o�  the 
current iteration.  

   2  .    Merge into/split from a platoon:  To ensure that our 
model remains computationally tractable, we assume 
that a vehicle could hold only a single platoon 
membership status (either a member or not a 
member) throughout a road piece, i.e., the merging or 
splitting process can only commence in the transition 
point between two road pieces. A vehicle can merge 
into a platoon when it is already a platoon leader 
(resulting in the merging of two platoons), or a 

Non-platoon-enabled vehicle Platoon-enabled vehicle Roadside unit

Subject vehicle Communication

    FIGURE 1       The communication and control framework.    
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platoon-enabled free agent. Among all vehicles that 
qualify to merge into a platoon, the probability that a 
vehicle intends to merge is assumed to be  pmerge . � ere 
are two cases regarding the pro� le of the vehicle in 
the immediate downstream of the merging vehicle. If 
it is a platoon member, then the new merging vehicle 
will have the same scheduled splitting position as 
other vehicles in the platoon. If it is a free agent, the 
scheduled splitting position  Psch , in the units of 
number of road pieces, will be decided at this time 
using a normal distribution. (For more details, see 
section “Platoon membership.”) 

 Every time when a platoon passes the transition 
point of two road pieces, the scheduled splitting position 
will decrease by 1 unit until this value reaches 0, at 
which point the platoon would split into free agents.  

   3  .    Lane change:  Rahman et al. [ 47 ] provide a 
comprehensive review of prior work on lane-changing 
models. For simplicity, in this paper we adopt the 
random lane-changing model, in which vehicles may 
change lanes once a minimum gap criterion is 
satis� ed. We assume that, in every update step, at 
most a single vehicle can change lanes. Furthermore, 
for safety considerations, we require a minimum time 
(no less than  tlc  = 5 s) between two successive lane 
changes by two successive vehicles (immediate 
follower/leader) traveling in the same lane. We allow 
only free agents, and not platoons, to change lanes. 
� e gap between the lane-changing vehicle and 
surrounding vehicles (the leading vehicle in the same 
lane, and the leading and following vehicles in the 
target lane) should be at least  dcg  to ensure a safe lane-
changing maneuver. Finally, the following vehicle in 
the target lane cannot be a follower in a platoon, 
indicating that the lane-changing process cannot 
insert vehicles into a platoon. 

 Not all vehicles that satisfy the conditions above 
intend to change lanes. Among all quali� ed vehicles, 
the probability that a vehicle intends to change lane is 
pchange . The lane-changing process is assumed to 
be completed within  tlcp  seconds, a� er which the lateral 
position of the lane-changing vehicle would not change, 
and its longitudinal speed has to have reached the speed 
of the leading vehicle in the target lane.  

   4  .    Adjusting velocity using a car-following model:  Each 
vehicle needs to continuously adjust its velocity to 
maintain a large-enough safety gap from its leading 
vehicle. For a free agent we use the Intelligent Driver 
Model (IDM) [ 66 ] for adjusting velocity. For platoon 
members in the steady state, the platoon leader will 
behave similarly to a free agent in terms of car-
following behavior, and other platoon members will 
instantaneously take the same acceleration and 
velocity as the platoon leader to maintain a steady 
headway to their preceding vehicle. In the splitting/
merging state, the headway will increase/decrease 
following a constant speed. (We use the speed of 
5 m/s in our simulations.) � e parameters used to 
calibrate IDM are summarized in  Table 1 . For more 

information on the car-following model parameters, 
we refer the reader to [ 66 ]. For more information on 
the optimal control model parameters, we refer the 
reader to [ 22 ]. For fuel cost-related parameters, 
we refer the reader to [ 51 ,  63 ].            

          Subject Vehicle     � e subject vehicle updates its motion 
plan every  tupd  = 0.4 s. It is assumed that the surrounding 
vehicles’ motion information is available to the subject vehicle 
in real time. Due to the long computational time of trajectory 
planning and control in a dynamic driving environment, it is 
problematic for the subject vehicle to obtain the latest tra�  c 
information and then plan its own trajectory for the imme-
diate next period, that is, a� er the trajectory planning process 
is completed, the planned trajectory would be  already 
outdated. � us we  implement a receding horizon control 
method and consider the computational delay explicitly in 
this paper. During this process, the subject vehicle perceives 
the environment, estimates other vehicles’ motions for the 
next 2 tupd  period, and makes its own trajectory plan for the 
second following period, i.e., [ t + tupd ,  t +  2 tupd ], where  t  is the 
current time. � is results in a trajectory that can still be e� ec-
tively followed during this window. � e potential mismatch 
between the estimated and actual trajectories of the 
surrounding vehicles can be  addressed by adopting the 
receding horizon planning approach. � e optimal trajectory 
is computed by a non-convex optimization solver in MATLAB, 
called fmincon. 

 As discussed in [ 22 ], the subject vehicle may get involved 
in a collision due to the surrounding vehicles’ sudden speed 
� uctuations during the lane-changing process. More speci� -
cally, the subject vehicle may not be able to take any action 
without violating the constraints of the optimal control model 
for the following reasons: ( i ) sudden speed change of the 
surrounding vehicles; ( ii ) comfort-related maximum accelera-
tion and jerk constraints in the optimal control model; and 
( iii ) conservative constraints regarding the safety time gap 
between the subject vehicle and any surrounding vehicles. In 
case of there being no feasible solution for the optimal control 
model, the Intelligent Driver car-following Model is utilized 
to provide a longitudinal motion reference for the 
subject vehicle.  

  Platoon Membership     � is section elaborates on platoon 
formations. When merging, we  assume a free agent or a 
platoon can merge with its immediate downstream free agent 
or platoon, that is, merging can occur between two free agents, 
two platoons, or a free agent and a platoon. For the purpose 
of simulations, we assume a � nite number of possible sched-
uled splitting positions,    � � � �sch sch sch

1 2, , , n     , in an ascending order 
of time. Given the mean  μsch  and the standard deviation  σsch , 
we draw a random number  psch  from the normal distribution 
 � �sch sch,� �     to schedule a splitting time, where    � �sch sch sch

i ip� � �1

indicates selecting the scheduling time    P i
sch sch= �     . We  set 

P n
sch sch= �      if    p n

sch sch> �     . At the scheduled splitting position, 
platoon members will detach one by one, starting from the 
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platoon tail, by increasing their gap from their immediate 
downstream vehicle.    

  Case Study and Numerical 
Experiments 
 In this section we conduct experiments in the simulation 
framework laid out in the previous section, where the trajec-
tory of the subject vehicle is controlled by the proposed 
optimal control model. � e simulation framework consists of 
a two-lane highway where the subject vehicle is assumed to 
be initially traveling on the right lane. � e traveled path is 
composed of 20 road pieces, with two on-ramps in the � rst 
and eighteenth road pieces, and three o� -ramps on the fourth 
and twel� h road pieces and the destination of the trip. � e 
travel path is 10.8 km in length, where the � rst, fourth, twel� h, 
and eighteenth road pieces are 400, 300, 200, and 300 m in 
length, respectively, and the rest of the road pieces are 600 m 
in length. Recall that we consider a road piece to be homoge-
neous in macroscopic tra�  c conditions. 

 We quantify the implications of the optimal control 
model under di� erent con� gurations of platooning (enabled 
or not) and lane changing (enabled or not) in di� erent tra�  c 
environments. Speci� cally, we consider three tra�  c states of 
free-� ow tra�  c, onset-of-congestion tra�  c, and congested 
tra�  c. In order to provide a realistic simulation environment 
under each tra�  c state, we set up a warm-up process during 
which we use the Greenberg fundamental diagram [ 67 ,  68 ] to 
create simulation instances under each tra�  c state. For details, 
refer to Appendix A. 

 For each tra�  c state, we run seven simulation scenarios, 
each scenario using a di� erent controller for the subject 
vehicle, as displayed in  Table 4 . We  implement two basic 
controllers: CF refers to the IDM car-following model and OC 
refers to a basic optimal control model. More sophisticated 
controllers are introduced by adding platooning and lane-
changing capabilities to these two basic controllers: the su�  x 
“_Mi” indicates the platooning capability, where the vehicle 

is required to keep its platoon membership for at least i km if 
it merges into a platoon, the su�  x “_L” refers to the lane-
changing capability, and the su�  x “_LMi” refers to a controller 
that has both platooning and lane-changing capabilities. 
Finally, for all seven controllers listed in  Table 4 , VoT is 
assumed to be zero, indicating that the generalized cost e� ec-
tively turns into the fuel cost. we use the su�  x “_Tj” at the 
end of the controllers to denote a non-zero VoT of j. For each 
tra�  c state, we run 25 random instances of each simulation 
scenario and report the trip cost, which is a linear combination 
of the fuel and time costs. 

  E�  ciency Results for the 
Subject Vehicle 
 In this section we report the overall cost of the subject vehicle 
under the seven introduced controllers, the three tra�  c states, 
and two di� erent VoTs.  Figure 2  displays the results for the 
VoT  ηt  = 0 dollars per hour, e� ectively comparing the fuel 
e�  ciency bene� ts of the seven controllers. � e values of the 
overall fuel consumption by the subject vehicle under all 
scenario pairs are compared using a two-tailed Student’s 
t-tests at the 5% signi� cance level to identify fuel savings that 
are statically signi� cant. 

  � e top plot in  Figure 2  presents the results for the free-
� ow tra�  c state. � ese results suggest that without lane 
changing, the optimal control model both with and without 
the ability to form a platoon (i.e., OC, OC_M0, and OC_M6), 
can result in statistically signi� cant reductions in fuel cost (at 
the 5% signi� cance level), compared to the car-following 
model (CF). With lane changing, OC_L and OC_LM0 result 
in even higher fuel costs than CF. � is is because the lane-
changing process itself may add to the fuel cost—a cost that 
might be underestimated by the short-sighted OC. In general, 
if the subject vehicle is platoon enabled and forced to keep its 
platoon membership for at least 6 km (i.e., the OC_M6 and 
OC_LM6 scenarios), the fuel savings are more signi� cant 
compared to OC alone. However, with lane changing, scenario 
OC_LM0, where the platoon can dissolve at any time a� er its 
formation, does not produce statistically significant fuel 
savings compared to OC_L. � ese results indicate that a 
stable, long-term platoon membership can have a positive 
e� ect on fuel e�  ciency. 

 � e middle plot in  Figure 2  demonstrates the results for 
the onset-of-congestion tra�  c state. Results indicate that 
similar to the free-� ow case, without lane changing, optimal 
control o� ers statistically signi� cant fuel savings compared 
to car-following for all control-based scenarios (with and 
without platooning). With lane changing, OC_L results in 
higher fuel cost compared with CF, and OC_LM0 has no 
signi� cant di� erence with CF. However, a comparison of OC, 
OC_M0, and OC_M6 scenarios in the onset-of-congestion 
tra�  c state shows that OC_M0 results in the least fuel saving, 
OC holds the second place, while OC_M6 achieves the most 
fuel saving. � ese results are intuitive since the frequent split-
ting of the subject vehicle from platoons in the onset-of-
congestion state leads to higher energy consumption in the 

  TABLE 4      List of controllers.   

Controller Description
CF The intelligent driver car-following model 

[ 66 ]

OC Optimal control model

OC_M0 OC with platoon merging, but no 
minimum required distance to travel in a 
platoon

OC_M6 OC with platoon merging, but a minimum 
required distance of 6 km to travel in a 
platoon

OC_L OC with lane changing enabled

OC_LM0 OC_M0 with lane changing enabled

OC_LM6 OC_M6 with lane changing enabled ©
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OC_M0 scenario, and the energy savings from a short-lived 
platoon cannot make up for this loss. 

 Finally, the bottom � gure in  Figure 2  displays the results 
for the congested tra�  c state. Results indicate that similar to 
the two previous tra�  c states, without lane changing, optimal 
control o� ers lower fuel costs compared to car-following. � e 
OC_M0 controller does not o� er statistically signi� cant 
improvements over OC for the same reason stated above; 
however, OC_M6 can still o� er statistically signi� cant fuel 
savings over both OC and OC_M0. 

 In general,  Figure 2  shows that regardless of tra�  c state, 
the OC can outperform the CF in terms of energy e�  ciency. 
Enabling platooning can increase these bene� ts even further 
if the model does not allow the platoon to dissolve right a� er 
its formation, and forces platoon members to travel together 

for a period of time. Lane changing could reduce the fuel 
e�  ciency bene� ts of the optimal control controllers to the 
point of matching fuel e�  ciency levels of traditional CFs; 
however, when platoon-keeping is enforced, the undesirable 
fuel e�  ciency implications of lane changing can be negated 
to a great extent. 

 In  Figure 3 , we set the VoT to $20 per hour and conduct 
simulations similar to those in  Figure 2 . � is � gure shows 
that minimizing a generalized cost, which takes into account 
the driver’s VoT in addition to fuel cost, turns lane changing 
into a more desirable feature of the OC. 

  Under a VoT of 20, in the congested tra�  c state, there 
is no signi� cant di� erence among all seven controllers. In 
the free-� ow tra�  c state, we observe no statistically signi� -
cant difference among OC_L_T20, OC_LM0_T20, and 

    FIGURE 2       The top, middle, and bottom fi gures represent the free-fl ow, onset-of-congestion, and congested tra�  c states, 
respectively. The vertical axes in these fi gures show the overall costs in dollars for 10 km-long trips. Along the horizontal axes, the 
overall costs of the subject vehicle under di� erent controllers are compared. The VoT is set to 0 dollars per hour in all simulations.    
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    FIGURE 3       The generalized cost of a 10.8 km-long trip with a VoT of $20 per hour under various tra�  c states and controllers.    
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OC_LM6_T20, indicating that when lane changing is 
enabled, platooning does not induce a signi� cant change in 
the generalized cost. � is is mainly due to the lower fuel cost 
compared to the VoT. In the onset-of-congestion tra�  c state, 
the OC_LM6_T20 controller results in a slightly higher 
overall cost compared with OC_L_T20. It is due to the fact 
that when forcing a platoon to hold for 6 km, its members 
cannot change lanes, resulting in a larger time cost. In free-
� ow and onset-of-congestion tra�  c states, di� erent from 
 Figure 2 , here the overall cost is reduced with lane changing. 
In both the free-� ow and onset-of-congestion tra�  c states, 
OC_M0_T20 can result in signi� cant overall cost savings 
compared with OC_T20, showcasing the importance of 
platooning in reducing the generalized cost, while OC_M6_
T20 has no signif icant difference compared with 
OC_M0_T20. 

 By quantifying the effects of lane changing and 
platooning on the fuel and time costs,  Figures 2  and  3  allow 
us to infer policies on the circumstances under which 
engaging in lane changing and/or platoon merging can 
reduce a vehicle’s generalized cost of travel. In general, 
platooning reduces fuel cost and lane changing reduces the 
time cost of a trip. As such, the overall generalized cost 
becomes dependent on the relative values of the VoT and fuel 
cost—if the VoT is small compared to the fuel cost, the 
contribution of platooning to the generalized cost over-
weighs that of the time cost, indicating a cost-minimizing 
policy of merging into platoons, committing to them for long 
periods, and avoiding lane changes. On the other hand, if 
the VoT is large relative to the fuel cost, the time component 
of the generalized cost overweighs the fuel cost, resulting in 
the cost-minimizing policy of not blindly committing to a 
platoon for a long period, while taking advantage of lane 
changing to reduce travel time when possible.  

  E�  ciency Results for the 
Surrounding Vehicles 
 In this section, we analyze the simulation results to investigate 
whether the di� erent controllers used by the subject vehicle 
have a signi� cant impact on the overall cost of its upstream 
tra�  c. We use the average cost of  Nsur  = 30 upstream vehicles 
of the subject vehicle in both lanes as an approximation of the 
cost of a surrounding vehicle. We assume that surrounding 
vehicles have the same VoT as the subject vehicle. 

  Figure 4  displays the average cost of  Nsur  = 30 upstream 
vehicles to the subject vehicle under the three tra�  c states and 
the seven controllers, with a VoT set to 0, thereby e� ectively 
measuring the impact of the controllers on fuel e�  ciency. � is 
� gure suggests that changing the subject vehicle controller 
from the CF to the OC may have di� erent implications in fuel 
consumption of the upstream vehicles depending on the tra�  c 
state. More speci� cally, replacing CF with OC results in signif-
icant fuel savings for the surrounding vehicles in the free-� ow 
tra�  c, does not introduce a signi� cant change in the onset-
of-congestion tra�  c state, and induces a signi� cant rise in 
fuel consumption under the congested tra�  c state. � is is due 
to the fact that when considering the OC and CF controllers, 
fuel saving originates from e�  cient cruising. As such, the 
higher the congestion level, the more abrupt changes in accel-
eration are required to maintain a safety gap, resulting in 
higher fuel costs. Vehicles upstream to the subject vehicle react 
to the subject vehicle’s changes in velocity following a CF. As 
such, the oscillations in the velocity pro� le of the subject 
vehicle are directly transferred to them. � is could result in 
a lack of fuel e�  ciency, or even rise in fuel consumption, for 
vehicles traveling upstream to the subject vehicle. As a result, 
the OC controller can provide statistically signi� cant fuel 
savings under the free-� ow state where smooth cruising is 

    FIGURE 4       Average fuel cost of the surrounding tra�  c under di� erent tra�  c states and controllers. The surrounding tra�  c 
consists of a total of 30 vehicles upstream of the subject vehicle, with 15 vehicles in the right lane and 15 vehicles in the left lane.    
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more likely to occur. � ese bene� ts disappear under the onset-
of-congestion state, and are reversed under the congested state. 

  � e controller OC_M6 outperforms CF, OC, and OC_
M0 in all three tra�  c states, indicating that a CV can create 
fuel e�  ciency for its upstream tra�  c if it joins a platoon and 
commits to it. Similarly, when lane changing is enabled, OC_
LM6 outperforms OC_L and OC_LM0, con� rming the same 
conclusion. Among all controllers, OC_LM6 results in the 
most overall fuel savings for the surrounding vehicles. Finally, 
the subject vehicle’s lane-changing decisions do not create a 
significant difference in the surrounding vehicles’ 
fuel consumption. 

 In  Figure 5 , we set the VoT to $20 per hour for all vehicles. 
� ere is no statistically signi� cant di� erence among control-
lers in the onset-of-congestion and congested tra�  c states. In 
the free-� ow tra�  c state, OC_T20 and OC_L_T20 result in 
larger costs for the surrounding vehicles. � is behavior results 
from the fact that under this high VoT, the time cost becomes 
the overwhelming portion of the total cost. As such, the 
subject vehicle’s steady behavior under OC_M6_T20 or OC_
LM6_T20 will not in� uence the surrounding vehicles, but a 
short-sighted controller will perturb the tra�  c and increase 
the time cost of surrounding vehicles. � is in� uence is not 
statistically significant in the onset-of-congestion and 
congested tra�  c states because the time cost under OC is 
already signi� cant.   

  Impact of Platooning 
  Figure 6  allows us to pinpoint the source of fuel e�  ciency 
induced by the proposed model. � is � gure shows the velocity 
curves of the subject vehicle and its immediate upstream 
vehicle in the onset-of-congestion tra�  c state in an example 
trip with a VoT of 0. � e points at the bottom of the plots in 
this � gure mark the platoon membership status of the subject 

vehicle under the OC_M6 and OC_M0 controllers at each 
time step. In  Figure 6 , only the � rst 500  s of the trip are 
presented, and the fuel costs for this 500 second-long section 
of the trip as well as the entire trip are shown in  Table 5 . � is 
� gure shows that, compared to CF, the OC provides smoother 
velocity curves, thereby resulting in fuel savings for both the 
subject vehicle and its immediate upstream vehicle. � is � gure 
also demonstrates that the OC_M6 controller provides the 
smoothest trajectories and, therefore, can provide the highest 
fuel-saving bene� ts.   

  Lane Changing and Its Impact 
  Figure 7  allows us to demonstrate how the subject vehicle 
makes lane-changing decisions. � is � gure shows the fuel 
consumption curves of the subject vehicle and those of its 
downstream vehicles (averaged over 30 vehicles) on both the 
right and le�  lanes for an example trip in the onset-of-conges-
tion tra�  c state. � e controller of the subject vehicle is set to 
OC_L. � e solid green line indicates the lane in which the 
subject vehicle travels at each time step, where the value 1 
indicates the le�  lane. At about 160 s, the subject vehicle 
changes from the le�  lane to the right lane. � is lane change 
can be attributed to the lower fuel consumption of down-
stream tra�  c in the right lane at about 140 to 160 s. At about 
245 s, the subject vehicle changes from the right lane to the 
le�  lane due to the lower fuel consumption of downstream 
tra�  c in the le�  lane at about 245 to 260 s. � e subject vehicle 
again switches from the le�  lane to the right lane at about 
290 s due to the lower fuel consumption in the right lane at 
about 275 to 290 s. As this � gure shows, changing lanes in 
response to reductions in fuel consumption in the other lane 
may bring about short-term fuel savings, but the frequency of 
these lane changes may increase the total fuel cost, as was 
demonstrated and discussed previously. 

    FIGURE 5       Average generalized cost of the surrounding tra�  c with a VoT of $20 per hour under di� erent tra�  c states and 
controllers. The surrounding tra�  c consists of a total of 30 vehicles upstream of the subject vehicle, with 15 vehicles in the right 
lane and 15 vehicles in the left lane.    
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   Figure 8  shows how the subject vehicle’s lane-changing 
decisions can in� uence the fuel consumption of the upstream 
tra�  c in both lanes. � is � gure shows the fuel consumption 
curves of the subject vehicle and its upstream vehicles (in both 
lanes) in an example trip under the onset-of-congestion tra�  c 
state. � e controller of the subject vehicle and the lane indi-
cator are the same as in  Figure 7 . At about 380 s, the subject 
vehicle changes from the le�  lane to the right lane.  Figure 8  
shows that the subject vehicle switching to the right lane does 
not negatively affect the fuel consumption in that lane, 
explaining the general trends in  Figure 4 .    

  Conclusion 
 In this article we proposed an optimal control model for trajec-
tory planning of a CAV in a mixed tra�  c environment. � e 
optimal controller was developed to plan the trajectory of the 
subject vehicle, including platoon formation and lane-changing 
decisions, while explicitly accounting for computation delay. 
� e objective of the optimal control model was to minimize 
the generalized cost of a trip, which is a linear combination of 
its fuel and time costs. We developed a simulation framework 
to quantify the e� ectiveness of the optimal control model in 
providing � rst-hand cost savings for the subject vehicle as well 
as second-hand savings for the vehicles traveling upstream of 
the subject vehicle. Our experiments suggest that, generally 
speaking, the optimal controller outperforms the IDM car-
following model in creating fuel e�  ciency. Results suggest that 
making platooning decisions based on local information does 
not necessarily lead to fuel savings; however, if a minimum 
platoon-keeping distance is enforced by the model, platooning 
can o� er signi� cant fuel-e�  ciency bene� ts, especially in the 
onset-of-congestion and congested tra�  c states. Our experi-
ments also indicate that under the controller with enforced 
minimum platoon-keeping distance, the non-CVs upstream 
of the subject vehicle may also experience second-hand statisti-
cally signi� cant fuel savings. When a generalized cost of travel 
including both the time and fuel cost is considered, lane 

  TABLE 5      Fuel cost for the subject vehicle and its immediate 
upstream vehicle in an example trip under the onset-of-
congestion tra�  c state.   

Fuel cost, 
dollars per 
10 km

First 500 s The entire trip
Subject 
vehicle

Following 
vehicle

Subject 
vehicle

Following 
vehicle

CF 0.3096 0.3519 0.3045 0.3518

OC 0.2420 0.2592 0.2422 0.2753

OC_M0 0.2439 0.2614 0.2424 0.2556

OC_M6 0.2238 0.2431 0.2166 0.2295 ©
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    FIGURE 6       The vertical axis shows velocity, with the unit of meters per second (m/s). The horizontal axis is time, with the unit of 
seconds (s). The top plot compares the speed curves of the subject vehicle under di� erent controllers, and the bottom plot shows 
the corresponding speed curves of the immediate upstream vehicle to the subject vehicle.    
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    FIGURE 8       The vertical axis shows fuel consumption, with the unit of dollars per 10 km. The horizontal axis is time, with the unit 
of seconds. The average fuel cost of vehicles upstream of the subject vehicle in both lanes (15 vehicles in the left lane and 15 
vehicles in the right lane), and the fuel cost of the subject vehicle and its lane position are shown.    
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    FIGURE 7       The vertical axis shows the fuel consumption, with the unit of dollars per 10 km. The horizontal axis is time, with the 
unit of seconds. The average fuel cost of vehicles downstream of the subject vehicle in both lanes (15 vehicles in the left lane and 15 
vehicles in the right lane), and the fuel cost of the subject vehicle and its lane position are shown.    
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changing may introduce time savings signi� cant enough to 
more than compensate the increased fuel consumption during 
the lane-change maneuver and, in fact, reduce the overall cost 
of a trip. As such, our experiments indicate the importance of 
the relative values of fuel cost and VoT in a driver’s decision-
making process—with a higher VoT, lane changing becomes 
more attractive, leading to the generalized cost preferring a 
shorter trip to a more fuel-e�  cient one. Similarly, with a 
smaller VoT one might bene� t from merging into a platoon to 
reduce his/her fuel cost. � is interesting relationship can open 
doors for introducing mechanisms between agents where those 
with lower VoTs might grant lane access to those with higher 
VoTs for monetary compensation, thereby increasing utilities 
of all parties.      
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 Appendix A .    Simulation 
Warm-Up 
 According to [ 69 ], many di� erent models have been proposed 
to capture the relationship among the three fundamental 
parameters of tra�  c � ow—tra�  c � ow, speed, and tra�  c 
density. Here we adopt Greenberg’s model, which presents one 
of the earliest and most well-known speed-density models [ 67 , 
 68 ]. Let  vm  and  km  be the corresponding velocity and density 

when the � ow reaches its maximum value, which is    1
tp

    . We set 

k1  = 0.3  km ,  k2  = 0.8  km , and  k3  = 2  km  as the maximum density 
under the free-� ow, onset-of-congestion, and congested tra�  c 
states, respectively. We then use Greenberg’s speed-density 
relationship in  Equation A.1  to compute the corresponding 
velocity of each of the three density cut-o�  points,
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where  v  denotes the space-mean speed,  k  denotes the tra�  c 
density,  vm  indicates the velocity when the � ow reaches its 
maximum value, and  kj  indicates the jam density. � e value 
of  kj  is determined by the parameters in the IDM,

k
l h

j

car st

�
�
1      Eq. (A.2)  

where  lcar  is the average vehicle length, and  hst  is the minimum 
headway at which vehicles are at a complete stop. A� er gener-
ating vehicle positions using the ideal time gap, we perturb these 
positions using Gaussian noise to incorporate random devia-
tions from an idealized model. During the warm-up process, 
all surrounding vehicles run for 2 min following the IDM.   
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